fluid-type identification - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

fluid-type identification - translation to russian

STRONGLY PARAMAGNETIC FLUID
Ferro fluid; Ferro-fluid; Ferroliquid; Ferromagnetic fluid
  • Ferrofluid on glass, with a magnet underneath
  • [[Macrophotograph]] of ferrofluid influenced by a magnet.
  • A ferrofluid in a [[magnetic field]] showing normal-field instability caused by a [[neodymium magnet]] beneath the dish
  • date=April 2019}}
  • R. E. Rosensweig with ferrofluid in his lab (1965)
  • Steve Papell invented ferrofluid for NASA in 1963

fluid-type identification      

нефтегазовая промышленность

определение типа флюида

lectotype         
  • Linnaeus]], is the type species for the genus ''[[Bufo]]''
  • dorsal]] and 2) ventral aspect of holotype,<br>3) dorsal and 4) ventral aspect of paratype
  • Type illustration of ''[[Mormopterus acetabulosus]]''
ANCHORING POINT (OF A NAME) IN TAXONOMY
Type specimen; Neotype; Biological types; Lectotype; Type (botany); Type (zoology); Botanical type; Clonotype; Type locality (biology); Type material; Paralectotype; Typus; Onomatophore; Cotype; Biological type; Hapantotype; Type specimens; Types in zoology; Type location (biology); Type illustration; Locality (biology); Type-specimen; Orthotype; Isoneotype; Plastotype; Isolectotype; Iconotype; Type series; Neotypification; Lectotypification; Ergatotype; Lectotype specimen; Type host; Typetaxon; Type (taxonomy); Series of type specimens; Hypotype

общая лексика

лектотип

clonotype         
  • Linnaeus]], is the type species for the genus ''[[Bufo]]''
  • dorsal]] and 2) ventral aspect of holotype,<br>3) dorsal and 4) ventral aspect of paratype
  • Type illustration of ''[[Mormopterus acetabulosus]]''
ANCHORING POINT (OF A NAME) IN TAXONOMY
Type specimen; Neotype; Biological types; Lectotype; Type (botany); Type (zoology); Botanical type; Clonotype; Type locality (biology); Type material; Paralectotype; Typus; Onomatophore; Cotype; Biological type; Hapantotype; Type specimens; Types in zoology; Type location (biology); Type illustration; Locality (biology); Type-specimen; Orthotype; Isoneotype; Plastotype; Isolectotype; Iconotype; Type series; Neotypification; Lectotypification; Ergatotype; Lectotype specimen; Type host; Typetaxon; Type (taxonomy); Series of type specimens; Hypotype

общая лексика

клонотип

Definition

УНЦИЯ
(от лат. uncia),..1) единица массы в системе английских мер. 1 унция ? 16 драхмам = 437,5 грана = 28,35 г...2) Единица вышедшего из употребления аптекарского веса; русская унция равнялась 29,86 г, английская = 31,1035 г. При торговле золотом часто используется тройская унция, которая соответствует английской...3) Жидкостная унция - мера объема (вместимости), равная в США 29,57 см3 (1/128 галлона), в Великобритании - 28,41 см3.

Wikipedia

Ferrofluid

Ferrofluid is a liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended in a carrier fluid (usually an organic solvent or water). Each magnetic particle is thoroughly coated with a surfactant to inhibit clumping. Large ferromagnetic particles can be ripped out of the homogeneous colloidal mixture, forming a separate clump of magnetic dust when exposed to strong magnetic fields. The magnetic attraction of tiny nanoparticles is weak enough that the surfactant's Van der Waals force is sufficient to prevent magnetic clumping or agglomeration. Ferrofluids usually do not retain magnetization in the absence of an externally applied field and thus are often classified as "superparamagnets" rather than ferromagnets.

In contrast to ferrofluids, magnetorheological fluids (MR fluids) are magnetic fluids with larger particles. That is, a ferrofluid contains primarily nanoparticles, while an MR fluid contains primarily micrometre-scale particles. The particles in a ferrofluid are suspended by Brownian motion and generally will not settle under normal conditions, while particles in an MR fluid are too heavy to be suspended by Brownian motion. Particles in an MR fluid will therefore settle over time because of the inherent density difference between the particles and their carrier fluid. As a result, ferrofluids and MR fluids have very different applications.

A process for making a ferrofluid was invented in 1963 by NASA's Steve Papell to create liquid rocket fuel that could be drawn toward a fuel pump in a weightless environment by applying a magnetic field. The name ferrofluid was introduced, the process improved, more highly magnetic liquids synthesized, additional carrier liquids discovered, and the physical chemistry elucidated by R. E. Rosensweig and colleagues. In addition Rosensweig evolved a new branch of fluid mechanics termed ferrohydrodynamics which sparked further theoretical research on intriguing physical phenomena in ferrofluids. In 2019, researchers at the University of Massachusetts and Beijing University of Chemical Technology succeeded in creating a permanently magnetic ferrofluid which retains its magnetism when the external magnetic field is removed. The researchers also found that the droplet's magnetic properties were preserved even if the shape was physically changed or it was divided.

What is the Russian for fluid-type identification? Translation of &#39fluid-type identification&#39